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the sample, were taken from Hamilton & Abrahams (1972). 
The comparison of the molecular geometries [Fig. l(d)] 
was with all the intramolecular distances <4.65 A instead 
of bond distances and angles (De Camp, 1973). 

The HNP plot for all the positional parameters [Fig. 1 (a)] 
is reasonably linear, with nearly zero intercept, suggesting 
that no systematic error is present. The slope of the plot 
indicates that the standard deviations are correctly esti- 
mated. These results are confirmed by the HNP plot for the 
intramolecular distances [Fig. l(d)]. 

The HNP plot for the Ut~'s of all the atoms (not reported 
here) was markedly non-linear. However, elimination of 
all the Uij's of the S atoms resulted in the plot of Fig. l(b), 
which is linear with zero intercept. It shows that systematic 
errors are absent but the standard deviations are under- 
estimated by a factor of 1"4. 

A systematic error in one or both structure determinations 
is clearly shown by the HNP plot for the U~j's of the S 
atoms [Fig. l(c)]. All the observed zip>__ 3.7 are relative to 
the Uli terms, whose correlation coefficient with the overall 

scale factor is about 0.4. This suggests that the systematic 
error is caused by the procedure, used by LB, of changing 
the interlayer scaling factors during the isotropic refine- 
ment. 
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A method for calculation of the integrated peak intensities of reflexions measured with a computer-controlled 
four-circle diffractometer is described. This is put forward as an alternative to the commonly used 'ordinate 
analysis' method for installations where the memory capacity of the computer is severely limited and 
external storage devices are not available. It is demonstrated by computer simulation that 'ordinate analysis' 
systematically overestimates weak reflexions whereas this effect is not significant for the method described. 

This paper will be of interest mainly to users of a single- 
crystal X-ray diffractometer controlled by a computer with 
limited program storage. The method to be described has 
been programmed for a PDP-8I with neither 'extended 
memory' nor magnetic storage devices, and is currently 
in routine use on a Hilger and Watts Y290 four-circle dif- 
fractometer. The particular problem of concern here is that 
of deriving the integrated peak intensity from the measured 
step-scan reflexion profile. If the peak is consistently centred 
in the scan the usual 'background-peak-background' 
method will suffice. Protein crystals, however, when 
mounted in the usual way (i.e. in a capillary adhering by 
surface tension to the wall) are often subject to small 
movements which must be allowed for if frequent realign- 
ment is to be avoided. 

One method in current popular use is 'ordinate analysis' 
(Watson, Shotton, Cox & Muirhead, 1970) in which a re- 
flexion is scanned in 2n steps, starting n steps before the 
predicted peak position. The peak is taken as the consecu- 
tive n steps with the greatest sum. The background intensity 
is then taken as the sum of the counts for the remaining n 
steps. Net positive intensity will always be found by this 
procedure, and a statistical analysis will show that weak re- 
flexions are systematically overestimated. 

Alternative methods have been proposed: Diamond 
(1969) has suggested that the measured profile should be 
fitted to a stored peak profile which varies over reciprocal 
space. Vandlen & Tulinsky (1971) describe a scheme in 
which a realignment subroutine is automatically entered if 
the intensities of monitor reflexions fall below predesig- 
nated values, indicative of crystal motion. Lehmann & 
Larsen (1974) have shown that the peak can be defined as 
the set of consecutive steps for which cr(1)/l is a minimum 
(I is the net integrated intensity for the assumed peak); the 
portion of the scan taken as peak is thus a characteristic of 
the scan profile, and not, as is common practice, a function 
only of the Bragg angle. Unfortunately these methods, 
although superior to 'ordinate analysis' in coping with 
crystal motion are either too sophisticated for a computer 
with limited memory capacity, or demand storage of the 
profiles for subsequent off-line processing, and many 
diffractometer users will not have the facilities to implement 
them. 

The procedure proposed here can be envisaged in three 
stages: (i) the reflexion is scanned in 2n steps centred on the 
predicted position and the profile is stored in the computer; 
(ii) the actual peak position is computed, and (iii) the peak 
is taken as the n steps centred on the actual position, the 
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sum of the remaining steps giving the background intensity. 
In practice the program allows the possibility of unequal 
peak and backgrotmd scan widths, which, however, must 
be preset at empirically determined optimum values. 
Stage (ii) requires further amplification; several procedures 
for deriving the peak position from the observed profile 
were considered; the most convenient seems to be to com- 

2n 

pute the peak position as the centroid $ = Y (C j - C ) .  xfl 
J = l  

2n 
Y (C j - C )  (summations only for Cj > C) where Cj is the 

3 = 1  
count and xj is the angular position for the j t h  step. C is a 
bias level which is taken as the mean of the C~. 

In order to test the ability of this method to locate weak 
reflexions with sufficient reliability, a simulation program in 
Fortran was written. The value of a Gaussian function 
superimposed on a constant background was calculated at 
each of 40 equally spaced intervals to represent the ' true' 
peak profile: 

E(Cj) = E(B) + (270 - ~/z. w- x. E(I) . exp [ - (j-jo)2/2w2]. 

The Gaussian peak width parameter w was set at 3"33 in all 
calculations; thus the value of the Gaussian function at a 
position 10 steps from the maximum is 1.1% of the value 
at the maximum. The expected background level E(B) was 
set at 10 and the expected net integrated peak intensity E(1) 
was varied to give values of E(S) of 1, 2, 3, 5 and 10, where 
S=I/a(1) and a(1)= (1+400) ~/z. The 'observed' counts Cj 
were selected by a random-number generator from the 
Poisson distribution with expectation E(Cj). The peak posi- 
tion j0 was also selected randomly from the uniform dis- 
tribution in the range - 1 0  to + 10 to simulate crystal 
motion. In each experiment 500 profiles were generated and 
the net integrated intensity obtained both by 'ordinate 
analysis' and by the method described. In addition, the 
counts for 20 steps centred on ]0 were summed to give, after 
subtraction of the remaining background, a control value 
Ic. Typical distributions of S [for E ( S ) =  3] are shown in 
Fig. 1. 

Table 1. Summary of statistics 
for the peak-scan simulation 

E(S) Method* S ( S - S )  '1/2 Skewness 
Control 1-04 1.00 0"102 

1 A 1.93 0.84 0.274 
B 1.07 1.10 -0"052 

Control 2.04 1.01 0.108 
2 A 2.78 0.89 0.117 

B 2.02 1.14 -0.054 

Control 3.03 1.01 0.094 
3 A 3.68 0.91 0.134 

B 3.08 1.09 -0.004 

Control 5.02 1.00 0" 109 
5 A 5.56 0.92 0.114 

B 5.03 1.03 0.175 

Control 9.99 0.96 0.122 
10 A 10.33 0.91 0.117 

B 10.00 0.98 0.152 

* Method A is ordinate 
in this paper. 
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Fig. 1. Histograms of the distribution of S[=I/a(l)] for 
E(S) = 3. (a) Control, (b) ordinate analysis, (c) new method. 

In each run the following statistics were accumulated 
(Table 1): the mean net intensity/tr ratio o e, the r.m.s, devia- 
tion in S, the skewness in the distribution of S, and the 
conventional R values RI=Y~II-E(I)I /~E(I)  and R2= 
Y lI-Icl/~Ic. RI is thus a measure of the absolute accuracy 
and R2 of the accuracy of peak location. The frequency of 
the error in the calculated peak position for E ( S ) = 5  is 
shown in Table 2. The measurements were divided into 
two groups: those with S c < E ( S )  and those with So> 
E(S) to demonstrate that the largest errors in the peak 
position occur when lc is smaller than the expected value. 

Table 2. Frequency of  the error in the calculated peak posi- 
tion for E(S) = 5 

Ordinate analysis 
Position error: 0 1 2 3 4 5 6 7 8 9 

8 18 17 24 14 12 5 0 0 1 
Sc<5 Frequency(%): 17 26 21 21 11 2 1 0 0 0 S~> 5 

New method 
Position error: 0 1 2 3 4 
Sc<5 Frequency(%): 21 42 25 9 3 
Sc>_5 36 47 15 2 0 

It is clear that weak reflexions measured by the new 
method are not on average subject to the positive bias that 
is a serious defect of the ordinate analysis method. It is 
interesting in particular that the method allows the possi- 
bility of a net negative peak intensity. A further advantage 
of the method is that, since the peak position is calculated 
precisely for all but the very weak reflexions, any slight 
misalignment of the crystal will be immediately apparent. 
The method suffers, however, from the disadvantage of 
ordinate analysis in that there is clearly a limit to the 
amount  of crystal movement that can be tolerated. It 
should be particularly noted that the method may give an 
incorrect result for a profile with a non-uniform background 
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and/or  an asymmetric peak, as is often encountered in a 
0/co scan. Data  collection by the ordinate analysis method 
is, however, normally carried out by means of an co scan, 
which usually gives a symmetric peak profile, since expe- 
rience indicates that intensities measured in this way are less 
sensitive to crystal motion. 

I acknowledge the support of the Science Research 
Council (Grant No. P40). 
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It is shown that the rough method of arriving at the number of non-hydrogen atoms from the volume of the 
unit cell of an organic crystal [Kempster & Lipson (1972). Acta Cryst. B28, 3674] can be improved by 
including hydrogen atoms. The empirical relation V= 8"9N, where V= volume of the unit ceil and N =  number 
of atoms including hydrogen, is arrived at by a least-squares fit of data from 114 compounds. 

Kempster & Lipson (1972), hereinafter referred to as KL, 
obtained empirically a relationship between the volume (V) 
of the unit cell of an organic crystal and the number (N) 
of atoms it contains, and gave the relation N ~ - I,'/18. They, 
however, excluded hydrogen atoms. Although the above 
is a rough relation and gives the number of non-hydrogen 
atoms with reasonable accuracy we felt that the hydrogen 
atoms cannot be excluded. The van der Waals radius for 
hydrogen is about 1.2 /~ whereas carbon, nitrogen and t.o 
oxygen have a value around 1.6 /~. We therefore carried 
out the following calculations on a total of 114 organic 
compounds (aliphatic). In the first case the calculations of" 
K L  were repeated and a least-squares fit was obtained for 
the parameter A '  in the relation, V= NIA" where N~ now 
is the total number of atoms excluding hydrogen. In the o.5 
second case the value of A in the relation V=NA was 
obtained by a least-squares calculation where N denotes the 
total number of atoms including hydrogen. In the third /v-v c\ 
case a two-parameter fit was attempted by least-squares \ ~  / 
calculation for the relation V= BINI + B2N2 where BI and 0.0 
B2 are the parameters to be determined and N1 and N2 
are the number of non-hydrogen atoms (C,N,O)  and 
hydrogen atoms respectively. The values obtained are given 
in Table 1. For comparison the r.m.s, value of the fractional 
error ( [ ( V -  Vc)/V]2) 1/2 where V~ is the calculated value of' 
the volume using the appropriate parameters was also 
obtained for each of the eases and is given in Table 1. -0.5 

It may be seen that the value of A '  (18-5) is close to that 
reported by KL. The use of a single parameter (including 
hydrogen atoms) may be seen to yield an appreciable 
improvement in the fit since the r.m.s, error is much lower 
(0.098) than for the earlier case (0.158). The two-parameter _ ~.( 
case seems to give a slightly better result with a standard o.o 
error of 0.093 but the improvement is perhaps not as 

* Contribution No. 384 from the Centre of Advanced Study 
in Physics, University of Madras, Madras-600025, India. 

pronounced as might be expected from the use of two 
parameters. 

Fig. 1. gives ( ( V -  Vc)/V) as a function of (N1/N2) where 
the average is over selected groups of compounds with 
approximately equal number in the different ranges of 
N1/N2. The agreement may be seen to be poor for the case 
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Fig. 1. Average fractional error in the calculated volume as a 

function of (N1/N2) for the cases with A' (©), A ( x ) and BI 
and Bz (o). 


